以太网GigEpack

先进的千兆位以太网,可完全接入微芯片的新产品组合GigEpack是一个完整的59千兆以太网芯片组合,具有高级功能。

嵌入式调制解调器

支持直接在板上运行的定制MicroPython应用,开发人员将其集成到现有设计中,即时实现蜂窝集成无需进行全面的重新设计。

AVX柱式超级电容器的解决方案

巧妙地融合了极高电容与极低ESR,具有出色的脉冲功率处理特性。 该电容器既可单独使用,也可与一次或二次电池结合使用。

浅谈集成稳压器调整率参数的测量原理和方法

2017-11-09 [责任编辑:lina]
分享到:
0分
【导读】集成稳压器又称集成稳压电源,电路形式大多采用串联稳压方式。集成稳压器与分立元件稳压器相比具有外接元件少、使用方便、性能稳定、价格低廉等优点,因而得到了广泛应用。



       集成稳压器按引出线端子多少和使用情况大致可分为三端固定式、三端可调式、多端可调式及单片开关式等几种。

  一、 集成稳压器调整率参数的测量原理和方法

  集成稳压器 (以下简称稳压器) 是电子设备普遍使用的器件,调整率参数则是反映集成稳压器性能的主要和关键参数,主要有电压调整率、电流调整率和功率调整率 (热调整率)。调整率参数的测量原理见图1。

浅谈集成稳压器调整率参数的测量原理和方法

  电压调整率参数 SV 的定义为 :

  当输出电流 IL 和环境温度 Ta 保持不变时,由于输入电压 VI 变化所引起的输出电压 VO 的相对变化量。

  电流调整率 (负载调整率) 的定义为 :

  当输入电压 VO 和环境温度 Ta 保持不变时,由于输出电流 IL 变化所引起的输出电压 VO 的相对变化量。

  功率调整率定义为 :

  当输入电压 VO、输出电流 IL 和环境温度 Ta 保持不变时,由于功率脉冲导致器件芯片温度 Tj 变化所引起的输出电压 VO 的相对变化量。

  二、影响调整率参数测试精度的原因分析及相应措施

  影响调整率参数测试精度的原因主要有以下几个方面 :

  1. 在输出电压 VO 下检测试 ΔVO 小变化量信号

  稳压器的各调整率参数的测试都需要精确测量输出电压 VO 的相对变化量ΔVO,该变化量ΔVO 与输出电压 VO 相比,通常是一个很小的数。稳压器的电压输出 VO 一般在几伏、十几伏甚至几十伏,而ΔVO 通常只有几十毫伏、几毫伏甚至只有零点几毫伏。为保证测试精度有以下几种方法可供选择 :

  a. 增加电压表的位数。

  电压测量可采用双积分法测量和逐位逼进法测量。双积分法比较容易得到较多的测试数位和较高的测量精度,但由于积分时间长 (几十到几百毫秒),采样速率降低,不能满足国军标稳压器详细规范对测试时间的要求。

  逐位逼进 A/D 具有较高的采样速率,可满足国军标规定的测试时间要求,但要满足稳压器输出电压变化量ΔVO 的测量精度和分辨力,需要采用 16 位 (或以上) 逐位逼进A/D,这通常需要昂贵的价格。

  b. 采样保持器电压补偿法。

浅谈集成稳压器调整率参数的测量原理和方法

  采样保持器电压补偿法的测试原理如图2,用采样保持器保持输出电压变化前的数值 VO1,用差分放大器比较和放大其和输出电压变化后的数值 VO2 的差值,即输出电压变化量 ΔVO。采用采样保持器电压补偿法可以用较小的电压量程来测量输出电压变化量 ΔVO。因此可降低 A/D 的数位,进而降低了测试成本。但采样保持器在工作中容易受到各种干扰,特别是负载电流的突变造成的干扰,因此影响测试数据的稳定性。

  c. D/A 电压补偿法

  D/A 电压补偿法的测试原理如图3,该方法与采样保持器电压补偿法相似,只是用 D/A 代替采样保持器,差分放大器的一个输入端接入要进行测量的输出电压 VO,另一端接入一补偿 D/A ,并程控其电压与 VO 相近。在输出电压 VO 的变化前进行一次 A/D 采样得到 VO1,在输出电压 VO 随输入电压 VI (或输出电流 IL) 变化后再进行一次 A/D 采样得到 VO2,将两次 A/D 采样得到的值相减,得到所需的ΔVO 值。采用该方法与采样保持器电压补偿法相比同样可降低 A/D 的数位,因而同样可降低测试成本,但因 D/A 的电压稳定性和抗干扰能力优于采样保持器,加之D/A 电压补偿法需进行两次 A/D 采样,可以消除系统误差,因此具有更好的测试效果。只是在测试前需要先进行一次 VO 的测试,以确定 D/A 的补偿电压值,这对于自动化测试系统不成为问题。

  由于 D/A 电压补偿法与其它方法相比,具有精度高、稳定性好、成本低等特点,同时测试时序符合国军标有关详细规范的规定,因此 D/A 电压补偿法是最佳的选择。

浅谈集成稳压器调整率参数的测量原理和方法

  2. 器件热效应对输出电压 VO 变化量测试的影响

  在稳压器的调整率参数测试过程中,需要对被测器件施加相应的输入电压 VI 和输出电流 IL,这样使被测试器件承受一定的功率,由于器件热阻的存在,这一功率将导致被测器件的芯片温度 Tj 上升。而稳压器的输出电压 VO 自身也是温度的函数,因此在进行电压调整率 SV 和 电流调整率 SI 的测量中所得到的输出电压变化量 ΔVO 中,一方面包含了由于输入电压 VI (或输出电流 IL) 的变化导致的输出电压 VO 变化,这正是我们要需要测试的。但另一方面由于被测器件承受功率的变化,也会导致器件的温度系数影响输出电压 VO 的数值,这样就干扰了ΔVO 的测量,对器件的测量时间越长,这一问题就越突出。

  为解决这一问题,在国军标详细规范 (例如 GJB 597/42-96) 中对测试时序做了明确的要求,其测试时序如图4

浅谈集成稳压器调整率参数的测量原理和方法

  标准规定要在电压脉冲 (或电流脉冲) 的前沿前 0.5 mS 进行初始测试,在前沿后 0.5 mS 进行最终测试。这一时间的确定一方面是考虑了稳压器输出电压 VO 随输入电压 VI (或输出电流 IL) 的变化需要一定的稳定时间,另一方面也考虑了尽量减小由于器件热效应对 VO 测量的影响。标准同时对电压脉冲 (或电流脉冲)的宽度也做了明确的规定。

  为了符合标准规定的测试时序,对测试系统中提供输入电压 VO 的程控恒压源和提供输出电流 IL 的程控恒流源 (电子负载) 提出了较高的性能要求。除了要满足测试所需的电压 (电流) 精度外,测试脉冲应具有良好的瞬态特性,即有徒直的脉冲前后沿及平坦的脉冲顶部,同时还要有效抑制测试过程中的自激振荡。为了满足这一要求,需对测试系统中的程控恒压源和恒流源进行精心的设计和调试。

  3. 测试系统附加电阻和接触电阻对输出电压变化量ΔVO 测试的影响

  在测试系统中从程控电子负载到被测器件之间总会存在电缆和导线,系统中为了完成不同类别器件的测试切换,也总会有一些接插转换环节,测试适配器插座和被测器件的引脚之间也需经过接插来实现,这就构成了系统的附加电阻和接触电阻。这些电阻虽然很小 (毫欧量级),但在安培量级的电流下会造成毫伏量级的压降,例如 1.5A 的输出电流流过 10 mΩ 的电阻将产生 15mV 的压降,这对于毫伏量级的ΔVO 的测试来说,已经不可容忍。由于接触电阻的不稳定性,也无法采用扣除一个固定数值的方法来弥补 ΔVO 数据的不准确和不稳定。因此国军标详细规范中明确规定对稳压器的输出端必须使用开尔文连接。

  所谓开尔文连接即要求在测试系统中从程控电源、电子负载、电压测量装置到被测器件的引脚全线采用开尔文四端法连接。除了系统的连线方式外,最终连接被测器件的测试插座必须采用开尔文四端插座。只有这样才能有效扣除系统内部的附加电阻和接触电阻,保证调整率参数测试的真实性和准确性。

  4. 测试系统中各种干扰对输出电压变化量ΔVO 测试的影响

  在自动化测试系统中,还有各种干扰会对输出电压变化量ΔVO 的测量造成影响,主要有高频干扰、工频干扰和随机干扰几种。

  高频干扰主要来自测试系统中的微机部分,CPU 工作时控制总线、数据总线和地址总线上都有上兆频率的高频信号,这些高频数字信号通过地线系统、电源系统以及一些数模混合芯片会干扰系统模拟部分的工作和测量。

  工频干扰主要来自电网,50 Hz 交流及 100 Hz 半波脉动干扰信号会通过地线系统及电源系统干扰系统模拟部分的工作和测量,电源变压器的漏磁也是一个不可忽略的因素。

  随机干扰也主要来自电网,电网中大功率电器的启动和关闭会使电网产生随机的尖峰干扰,当这种干扰发生在 A/D 采样过程中的话,将严重影响测试数据的精度。

  为排除上述各种干扰对输入电压变化量ΔVO 测试的影响,测试系统需采取以下各种措施 :

  a. 将输出电压 VO 的测量部分放入远离电源变压器的测试盒内,并采取屏蔽措施。

  b. 采用无电流模拟地线技术,有效隔离数字地线和模拟地线,减少通过模拟地线引入干扰。

  c. 采用有效的数字处理和软件滤波技术,并用软件调整测试采样周期,使其为工频周期的整数倍。

  d. 在采样保持器采样及 A/D 转换过程中利用 WAIT 信号迫使 CPU 的总线信号暂停工作,给模拟系统一个“安静”的采样环境。

  e. 用 74HC 三态总线驱动器隔离系统数据总线和 D/A 芯片,杜绝从 D/A 芯片引入高频干扰。

  f. 采用高频独石电容对系统所需部位进行有效的高频滤波。

  g. 对 PCB 板合理布局、布线,模拟部分器件和线路相对集中、独立,并远离数字部分。

  三、 STS 2108B 集成稳压器测试系统

  STS 2108B 集成稳压器测试系统是北京华峰测控技术公司自行研制、开发的模拟电路测试系统,是 STS 2108A 系统的升级版本,公司拥有该产品的自主知识产权。

  STS 2108B 适用于固定正输出、固定负输出、可调正输出和可调负输出稳压器的参数测试。系统测试原理符合国标 GB 4377-84。

  系统具有 50V 程控输入电压范围和 5A 程控输出负载电流的能力,可以完成输出电压 VO、基准电压 VREF、启动电压 VST、电压调整率 SV、电流调整率 SI、备用耗散电流 IDS、备用耗散电流变化量ΔIDS(V)、ΔIDS(I)、输出短路电流 IOS、纹波抑制比 Srip、功率调整率 SP 等参数的测试。

  系统在脉冲法测试方面符合国军标详细规范 GJB 597/4A-96 规定的测试要求,可有效避免被测器件的热效应对测试的干扰,同时也可避免测试过程中被测器件的温升。

  系统选用美国 3M 公司开尔文电桥四端测试插座,并全线采用开尔文四端法进行参数测试。

  由于系统具有良好的测试精度和稳定性,被北京半导体器件五厂、七七一所、四四三三厂等单位做为国军标集成稳压器生产线指定使用设备,同时也被广大整机研究所、生产厂和测试中心选用。







推荐阅读:

深入解读高端智能手机芯片里的“外交官”-射频前端 

Cees Links:物联网带来的冲击 

AI与HI深度融合助推健康工程发展 

透过LoRa阵营大布局,看这场物联网大戏 
 

关键字:集成稳压器 串联稳压 
本文链接:http://www.cntronics.com/gptech-art/80033133
分享到:
推荐给同仁
0
0
查看全部评论
有人回复时发邮件通知我

关于我们 | About Us | 联系我们 | 隐私政策 | 版权申明 | 投稿信箱

反馈建议:editor@eecnt.com     客服电话:0755-26727371

Copyright © WWW.CNTRONICS.COM  All Rights Reserved 深圳市中电网络技术有限公司 版权所有   粤ICP备10202284号-1 未经书面许可,不得转载本网站内容。